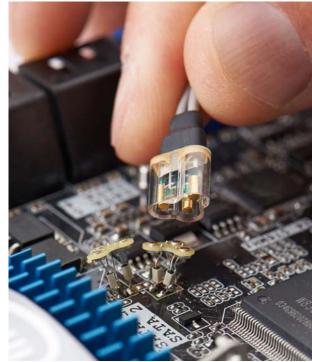
Keysight Technologies Oscilloscopes

www.keysight.com/find/scopefamily

Table of Contents

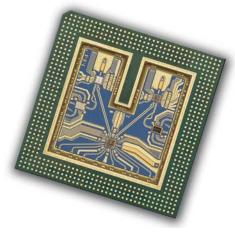

Introduction	3
Model Comparison Chart	4 - 5
U1600 Series	6 – 7
1000 Series	8 - 9
2000 X-Series	10 – 11
3000T X-Series	12 – 13
4000 X-Series	14 – 15
6000 X-Series	16 – 17
S-Series	18 – 19
V-Series	20 – 21
Z-Series	22 – 23
86100 DCA-X Series	24 – 25
Software Applications	26 – 29
Probes & Accessories	30 - 32

	20.0 GSa/s	1140.0 kpts	·	$\sim\sim$	~~~~	~~~	8.40 GHz	0.0 V	
form Windo= 1		75.0 mV/ 3	Concernant /	201	_	_	_	_	_
		Tysin my/13	coo my ji	9.4					
Zone Logic: 1	41		~			_			
								A /	1 7
and	A-A-							111	
	~ ~	\sim \sim					//V-	VV	1 -7
									V -1 -2
				1000					-2
-1.02 mi 630 p	s 2,28 m	3.93 mi	558 m	7.23 m	8.50 ms	10.5 Hs	12.2 mi	1338 mi	155 m
10 200 ns/	498.7952 ns	000 0							
			_			_	_	_	
×	10.0 dBm @	10.0 dB/ -40	0.0 dBm 🕀	а П	-	_	-		-
×	and the second design of the s	10.0 dB/ -40	0.0 dBm 🖨	1		_	_	_	
eral 🗙 🕝 10.0 dB/ 📑	and the second design of the s	10.0 dB/ -40	0.0 dBm 🔂						Į.
eral 🗙 🕝 10.0 dB/ 📑	and the second design of the s	10.0 dB/ -40	0.0 dBm 🖨						44
eral 🗙 🕝 10.0 dB/ 📑	Z1	10.0 dB/ -40	0.0 dBm ⊕	3.00 GHz	6.00 GPG	7.00 G-12		\$00 GHz	
trai 🗙 3 10.0 dB/ 4 Zone Logic: 1	Z1				6.00 CPUz	7.00 GHz	KOO GHE	5.00 CH2	-10
0 Hz 100 G	Z1				600 GHz	700 GHz	6.00 GHz	9.00 GHz	-40 -80 10.0 Ci
2 10.0 dB/ -4	Z1				600 Geu	7.00 GHz	800 GP4	9.00 GH2	-46 -86 100 G

Keysight Technologies: We Engineer Our Scopes for You

Keysight engineers have been creating reliable, insightful products for more than 75 years. We are continually looking for new ways to help you shape the future with innovative products and test solutions. From high performance to extreme value, and bandwidths ranging from 20 MHz to more than 90 GHz, we have the oscilloscope solutions to meet your evolving needs.

Just like you, we're working on what's next.


Keysight is the leader in oscilloscope innovation, and we are proud to hold a host of industry firsts including the first Mixed Signal Oscilloscope (MSO). Our Infiniium oscilloscopes offer the industry's deepest memory and lowest noise floor. Our capacitive touch-screen oscilloscopes, combined with touch triggering, are the only scopes that let you trigger on areas of interest with a swipe of the finger. This innovation leadership carries over to our probes and accessories with breakthroughs such as the industry's only probe designed specifically to measure DC power rails.

Keysight oscilloscopes give you the answers you need.

But great hardware is just the first step. We also offer more application-specific software than any other oscilloscope vendor. Keysight wants to help you get fast, accurate answers to your measurement questions whether you're working with low-speed serial protocols; analyzing specialized high-speed protocols; or doing compliance testing.

Keysight experts help shape emerging test standards.

Our engineers sit on governing boards to help define test standards long before the products that use them are even available. This means we design our oscilloscopes to meet these future standards, so you can get to market faster. Keysight experts participate in major standards bodies, including USB-IF, MIPI® Alliance, HDMI Forum, JEDEC, PCI-SIG®, and more so you can get the latest information first. Choosing a Keysight scope means you not only have access to cutting-edge technology but also to the experts who help create them.

Infiniium multichip facilitates high-bandwidth and low-noise

To enable our scopes to operate at high bandwidths and low noise we take advantage of leading-edge indium phosphide chip technology and custom thin film packaging. In addition Keysight's RealEdge technology is implemented using a combination of time interleaving, frequency interleaving and proprietary signal processing. Together this means we can offer the highest bandwidth lowest-noise real-time oscilloscopes in the world.

InfiniiVision ASIC chip enables MegaZoom.

InfiniiVision scopes incorporate acquisition memory, waveform processing, and display memory in an advanced .13m ASIC. This patented 4th generation technology, known as MegaZoom IV, delivers up to 1,000,000 waveforms (acquisitions) per second with responsive deep memory always available.

Here are just a few of the awards earned by Keysight oscilloscopes:

Model Comparison Chart

	U1600 Series	U2700 Series	1000 Series	2000 X-Series	3000T X-Series	4000 X-Series	6000 X-Series
Bandwidth	20 MHz to 200 MHz	100 MHz to 200 MHz	50 MHz to 200 MHz	70 MHz to 200 MHz	100 MHz to 1 GHz	200 MHz to 1.5 GHz	1 GHz to 6 GHz
Channels	2	2	2,4	2, 2+8, 4, 4+8	2, 2+16, 4, 4+16	2, 2+16, 4, 4+16	2, 2+16, 4, 4+16
Sample rate	Up to 2 GSa/s	Up to 1 GSa/s	Up to 2 GSa/s	Up to 2 GSa/s	Up to 5 GSa/s	Up to 5 GSa/s	Up to 20 GSa/s
Memory depth	Up to 2 Mpts	32 Mpts, std.	Up to 20 kpts	Up to 1 Mpts	4 Mpts and segmented memory std.	4 Mpts and segmented memory std.	4 Mpts and segmented memory std.
Standard warranty	3 years	3 years	3 years	5 years	3 years	3 years	3 years
Calibration period	N/A	N/A	1 year	2 years	3 years	2 years	2 years
Built-in instruments	 10,000-countresolution DMMDatalogger	None	None	 8 digital channels 20 MHz FG 5-digit counter 3-digit DVM 	 16 digital channels 20 MHz AWG 8-digit counter 3-digit DVM 	 16 digital channels Dual 20 MHz AWG 5-digit counter 3-digit DVM 	 16 digital channels Dual 20 MHz AWG 10-digit counter 3-digit DVM
Special triggers	None	None	None	 Serial protocol Zone touch 	 Serial protocol Digital channels Zone touch 	Serial protocolDigital channelsZone touch	 Serial protocol Digital channels Zone touch
Key features	 Handheld device Dual window zoom and math FFT PC link software Indoor, outdoor and night-vision viewing modes 	 Portable USB connected, PC hosted device Waveform zoom and math FFT Advanced triggering; edge, pulse width, TV 	 Portable Most economical FFT Simultaneous viewing of main and zoomed waveforms 	 Basic R&D bench 50,000 waveforms/ sec update rate 8.5-inch display Serial bus options Fully upgradeable 5 year warranty 	Everything the 2000X has plus – 1,000,000 wfms/s update rate – Advanced math & power analysis – Capacitive touch	 Everything the 3000T has plus 12.1-inch capacitive touch screen FFT, USB 2.0 pre-compliance and FPGA applications Up to four active probes 	 450,000 wfms/s update rate Everything the 4000X has plus Multi-touch display Voice control Jitter and real-time eye diagram analysis

Model Comparison Chart

	9000 Series	S-Series	90000A Series	V-Series	Z-Series	86100D DCA-X Series
Bandwidth	600 MHz to 4 GHz	500 MHz to 8 GHz	2.5 GHz to 13 GHz	8 GHz to 33 GHz	20 GHz to 63 GHz	65 GHz optical ¹ 90 GHz electrical ¹
Channels	4,4+16	4,4+16	4	4, 4+16	4	Up to 16
Sample rate	Up to 20 GSa/s	Up to 20 GSa/s	Up to 40 GSa/s	Up to 80 GSa/s	Up to 160 GSa/s	Up to 250 kSa/s ¹
Memory depth	Up to 1 Gpts	Up to 800 Mpts	Up to 1 Gpts	Up to 2 Gpts	Up to 2 Gpts	Limited by hard drive
ADC bits	8	10	8	8	8	14 to 16 ¹
Special triggers	 InfiniiScan Digital channels 	 InfiniiScan Digital channels 	– InfiniiScan – A-B HW	 InfiniiScan A-B HW Digital channels HW serial 	– InfiniiScan – A-B HW	None
Key features	 Mid range R&D bench Up to 16 independent/ cascaded math functions More than 42 applications for compliance, debug and analysis 	Everything the 9000 has plus – 15-inch capacitive touch display – Low-noise front-end – Industry's highest ENOB	 Ideal for high-speed digital & RF applications More than 38 applications for compliance, debug, and analysis 	 Best-in-class signal integrity Longest 160-bit hardware serial trigger More than 50 applications for compliance, debug, and analysis 	 Best-in-class signal integrity Industry's lowest noise and jitter measurement floors More than 50 applications for compliance, debug, and analysis RF, optical applications and emerging technologies analysis 	 Multi-function sampling scope Digital communication analyzer Automated eye diagram analysis Jitter and interference analyzer TDR/TDT for impedance and S-parameter analysis

1. Module dependent.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

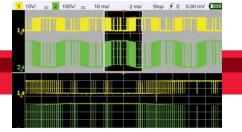
Keysight's committed to superior product quality and lower total cost of ownership. Keysight is the only test and measurement company with a three-year warranty standard on all instruments, worldwide. And, we provide a one-year warranty on many accessories, calibration devices, systems and custom products.

U1600 Series Oscilloscopes

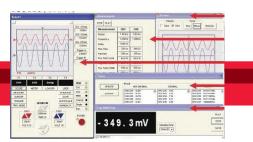
20 MHz to 200 MHz handheld scopes

Engineered for performance in rugged and portable applications

- See more clearly and differentiate simultaneous signals from both channels more easily with a 5.7-inch VGA TFT LCD display or 4.5-inch LCD color display ¹
- Up to 4 hours battery life and robust package – makes an ideal companion for installation and maintenance personnel and those on the go
- Scopes isolated channels enable floating measurements capability on the U1610A/20A
- Up to 1 GSa/s per channel realtime sampling rate and 1 Mpts recording length ensure you get high performance, even on a handheld
- 3-in-1 solution: Dual-channel scope, true RMS DMM and real-time data logger
- High-speed USB port for a quick and convenient way to save data into USB flash drive and/or to remote access using the scope ²


 5.7-inch VGA TFT LCD display for U1610A/ 20A and 4.5-inch LCD color display for U1602B/04B
 USB host- Opt 001 is optional for U1602B/U1604B only

	U1602B	U1604B	U1610A	U1620A		
Bandwidth	20 MHz	40 MHz	100 MHz	200 MHz		
Sample rate	Up to 200) MSa/s ¹	Up to 1 GSa/s ¹	Up to 2 GSa/s ¹		
Record length	Up to 12	25 Kpts	Up to 120 Kpts	Up to 2 Mpts		
Channels			2			
Display	4.5" color CSTN	LCD (320x240)	5.7" VGA	TFT LCD		
Channel isolation	N	/A	Ye	'S		
Vertical resolution		8 t	8 bits			
Vertical sensitivity	5 mV/div to	o 100 V/div	2 mV/div t	o 50 V/div		
Maximum input	CAT III 300 Vrms (up to 400	Hz) from terminal to ground	CAT III 600 Vrms (with 10:1 probe)			
			CAT III 300 Vrms	(direct 1:1 probe)		
Input impedance	1 MΩ II	< 20 pF	1 MΩ ± 1% ≈	22 pF ± 3 pF		
Timebase range	50 ns to 50 s/div	10 ns to 50 s/div	5 ns/div to 50 s/div	2 ns/div to 50 s/div		
Triggering	Edge, pattern, pi	ulse width, video	Edge, glitch, TV, Nth edge , CAN, LIN			
Dimensions	24.1 cm high x 13.8 ci	m wide x 6.6 cm deep	27 cm high x 18.3 cm	wide x 6.5 cm deep		
Weight	1.5 kg (3.3 lbs)	< 2.5 kg	(5.5 lbs)		
Battery life	Up to 4	hours	Up to 3 hours			


1. Single-channel operation.

Handheld high performance. In-plant or off-site, take advantage of a full-featured scope with 22 automatic measurement functions, advanced triggering, high sampling rate and deep memory.

High-precision zoom-in capability. Deep memory and a high sampling rate let you capture long time spans and non-repeating signals, then zoom in to the segment of interest to scrutinize subtle details.

Easy connections. PC Link software handles your data collection, storage and documentation needs – or lets you control the unit remotely – using a USB 2.0 full-speed connection.

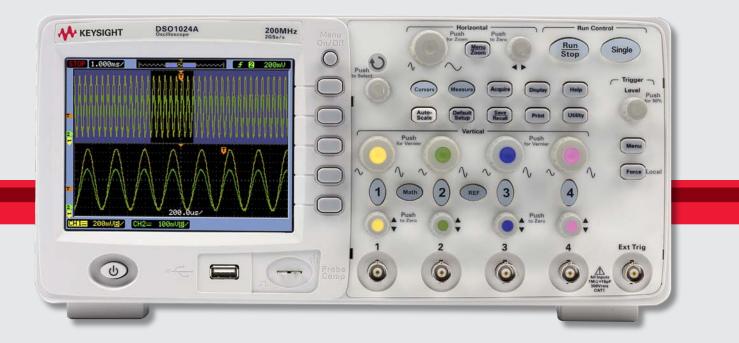
Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes:

- All models come with the U1561A CAT III 600 V probe
- See our complete list of compatible probes on pages 30 to 31

Accessories


Don't forget options such as the CAT III 600 V 100:1 probe, desktop charger and Li-lon battery pack, AC current clamp, temperature adapter, carrying case and USB host capability.

1000 Series Oscilloscopes

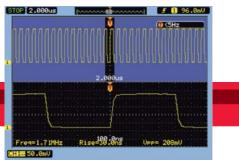
50 MHz to 200 MHz entry scopes

Engineered to give you more scope than you thought you could afford

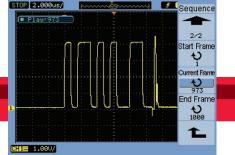
- The most affordable Keysight oscilloscope brings you the Keysight quality and support that ultimately increases your measurement confidence.
- 23 automatic measurements give you quick access to powerful functions
- Sequence mode allows easy debug with waveform recording, playback and storage
- Go/no-go mask testing automatically detects waveforms that deviate from the standard you set
- 3-year standard warranty extendable to 5-years to protect your investment

	1052B	1072B	1102B	1152B	1004A	1014A	1024A		
Bandwidth	50 MHz	70 MHz	100 MHz	150 MHz	60 MHz	100 MHz	200 MHz		
Sample rate		1 G	iSa/s			2 GSa/s			
Channels DSO			2		4				
Memory		16 Kpts	standard			20 Kpts standard			
Vertical resolution				8 bits		20 11 10 0 0 0 10 10 0			
Vertical sensitivity			2	2 mV/div to 10 V/di	V				
Maximum input			CAT I 300 Vrms, 40	vervoltage 1.6 kVp	ok				
Input impedance	1	$M\Omega \pm 2\%$ in para	llel with 15 pF ± 3 p	F	1 MΩ ± 19	% in parallel with 18	3 pF ± 3 pF		
Timebase range	5 nsec/div t	o 50 sec/div	2 nsec/div to 50 sec/div	5 nsec/div t	o 50 sec/div	2 nsec/div to 50 sec/div	1 nsec/div to 50 sec/div		
Time scale accuracy				50 ppm					
Triggering		E	dge, video, pulse w	idth, alternate, pa	ttern (A models or	nly)			
Dimensions	30.3	3 cm wide x 15.4 c	cm high x 13.3 cm d	m deep 32.46 cm wide x 15.78 cm high x 12.92 cm dee					
Warranty				3 years standard					
Weight		2.4 kgs	; (5.3 lbs)			3.03 kgs (6.7 lbs)			

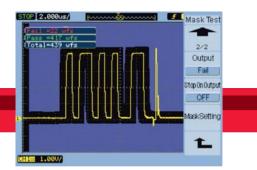
Scope additions and enhancements


Probes

Improve your measurement reliability with our comprehensive selection of probes:


- DS01052B, DS01072B, DS01102B, DS01004A and DS01014A come with the N2826B 150 MHz 10:1 passive probe
- DS01152B and DS01024A comes with N2863B 300 MHz 10:1 passive probe
- See our complete list of compatible probes on pages 30 to 31

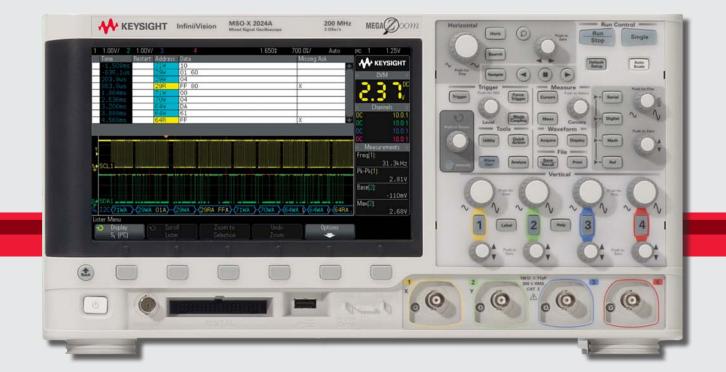
Accessories


Don't forget options that make measurements faster and more convenient, such as the rackmount kit, education training kit and soft carrying case.

With True Zoom mode you can view a long record and the details of a zoom window simultaneously.

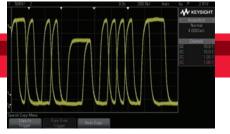
Use sequence mode to record up to 1000 trigg review in playback mode to find anomalies.

Mask testing provides a quick pass/fail comparison incoming signal to a test envelope you define.

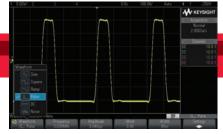

www.keysight.com/find/1000family

InfiniiVision 2000 X-Series Oscilloscopes

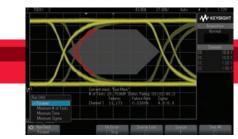
70 MHz to 200 MHz economy scopes


Breakthrough technology delivers more scope for the same budget

- 8.5-inch WVGA display is the largest in this class
- 50,000 waveforms per second update rate lets you see more of your signal detail and infrequent anomalies more of the time
- 5 instruments in 1: oscilloscope, mixed-signal oscilloscope, WaveGen function generator, serial protocol analyzer and integrated digital voltmeter
- First fully upgradable oscilloscope: bandwidth, memory, MSO, WaveGen and measurement applications
- Supports BenchVue for logging measurement data and screen shots and Infiniium Offline analysis software



		2002A	2004A	2012A	2014A	2022A	2024A			
Bandwidth		70 N	1Hz	100	MHz	200	MHz			
Sample rate		2 GSa/s half channels, 1 GSa/s full channels								
Channels	DSOX	2	4	2	4	2	4			
	MSOX	2 + 8	4 + 8	2 + 8	4 + 8	2 + 8	4 + 8			
Memory			100	kpts, std. 1 Mpts and	segmented memor	y, opt.				
Display		n display								
Waveform update rate > 50,000 waveforms per second										
Vertical resol	ution		8 bits (up	o to 12 bits with avera	iging or high-resolu	tion mode)				
Vertical sensi	tivity			1 mV/div	v ~ 5 V/div					
Integrated ins	struments		Optiona	nal MSO, function generator, protocol analyzer, DVM						
Bandwidth lin	nit	Approximately 20 MHz								
Maximum inp	ut voltage		CAT	I 300 Vrms, 400 Vpk,	CAT II 300 Vrms, 40)0 Vpk				
Input impeda	nce			1 MΩ ± 2	% (11 pF)					
Timebase ran	ge		5 ns/div	to 50 s/div		2 ns/div t	o 50 s/div			
Time scale ac	curacy		25 ppm ± 5 ppm per year							
Triggering		Ec	lge, pulse width, pa	attern, video, I²C*, SF	PI ¹ , CAN ¹ , LIN ¹ , UA	RT/RS-232/422/485	5 ¹			
Connectivity		USB Device x2, USB host x 1, std. LAN, VGA, GPIB, opt.								
Dimensions		38.1 cm wide x 20.4 cm high x 14.1 cm deep								
Weight		3.85 kg (8.5 lbs)								
Warranty				5 years :	standard					


1. Optional. Protocol decodes and digital channels (MSO) will not work simultaneously.

See more of your signal more of the time with the largest screen in its class, the deepest memory and the fastest waveform update rates.

Do more with the power of 5 instruments in 1: oscilloscope, logic timing analyzer (opt.), integrated WaveGen arbitrary-function generator (opt.), serial protocol analyzer (opt.), and integrated digital voltmeter (opt.).

Get more investment protection with this fullyupgradable scope, including bandwidth and memory.

Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes:

- DSO/MSOX2002A, 2004A, 2012A and2014A come with the N2862B 150 MHz passive probe, 10:1 attenuation
- DSO/MSOX2022A and 2024A come with the N2863B 300 MHz passive probe, 10:1 attenuation
- See our complete list of compatible probes on pages 30 to 31

Accessories

Don't forget options such as the VGA/LAN or GPIB modules, soft carrying case, and rackmount kit.

Memory, bandwidth, and DSO-to-MSO upgrades

Protect your investment with the flexibility to upgrade your memory, bandwidth, and add MSO channels at any time.

Applications

Expand your scope's capabilities with our powerful lineup of applications:

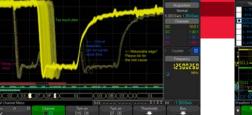
- Integrated feature options: WaveGen function generator, 3-digit voltmeter, mask testing, education training kit, and segmented memory
- General and serial protocol applications: I²C, SPI, CAN, LIN, UART/RS-232/422/485 (Serial is only available on analog channels with the 2000 X-Series.)
- See our list of applications on pages 26 to 29

InfiniiVision 3000T X-Series Oscilloscopes

100 MHz to 1 GHz digital storage and mixed signal scopes

Touch, discover, solve

- 8.5-inch capacitive touch display: designed for touch interface - simplify use
- 1,000,000 waveforms per second update rate lets you see more of your signal detail and infrequent anomalies more of the time
- Exclusive Zone touch triggering simplifies complex triggering to a touch of the screen
- 6 instruments in 1: oscilloscope, mixed-signal oscilloscope, WaveGen function generator serial protocol analyzer, time/ frequency correlated measurements with gated FFT, integrated digital voltmeter and 8-digit precision counter
- First fully-upgradable oscilloscope: bandwidth, MSO, WaveGen, DVM, and measurement application


		3012T	3014T	3022T	3024T	3032T	3034T	3052T	3054T	3102T	3104T
Bandwidth		100	MHz	200	MHz	350	MHz	500	MHz	10	ЭНz
Sample rate					5 GSa/s on h	alf channels	, 2.5 GSa/s c	n full channe	els		
Channels	DSOX	2	4	2	4	2	4	2	4	2	4
DSO	MSOX	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16
Memory	4 Mpts and segmented memory, std.										
Display			8.5-inch capacitive touch display								
Waveform up	odate rate		> 1,000,000 waveforms per second								
Integrated ir	ostruments		Optional MSO, 20 MHz arbitrary waveform generator, protocol analyzer, DVM, 8 digit counter								
Vertical reso	olution			8 bi	ts (up to 12 b	its with avera	aging or high	-resolution r	mode)		
Vertical sense	sitivity			-	$I M\Omega = 1 mV/$	/div to 5 V/div	/, 50 Ω = 1 m	V/div to 1 V/d	div		
Bandwidth li	mits					Approxima	tely 20 MHz				
Maximum in	out voltage		11	MΩ = CAT I 3	00 Vrms, 40	0 Vpk; transie	ent overvolta	ige 1.6 kVpk,	50 Ω = ≤ 5 \	/rms	
Input impeda	ance				Selectat	ole: $1 \text{ M}\Omega \pm 1^{\circ}$	% (14 pF), 50)Ω±1.5%			
Timebase ra	nge	5 ns/div	~ 50 s/div		2 ns/div ⁄	~ 50 s/div		1 ns/div ·	~ 50 s/div	500 ps/div	∕ ~ 50 s/div
Time scale a	ccuracy					1.6 ppn	n + aging				
Triggering		Zone t setup & h	ouch trigger old, video, e	nhanced vid	eo (HDTV) ¹ ,	8 trigger), pul USB ¹ , ARIN(2 ¹ , MIL-STD 2	C429 ¹ , CAN	¹ , CAN-FD ¹ ,	CAN-dbc ¹ ,	Nth edge burs FlexRay ¹ , SE 1	st, runt, NT ¹ , I ² C ¹ ,
Connectivity					USB device	x1, USB hos	t x2, LAN ¹ , \	/GA ¹ , GPIB ¹			
Dimensions					38.1 cm	wide x 20.4 c	m high x 14.	2 cm deep			
Weight						4.0 kg	(9.0 lbs)				
Warranty					З ує	ears standard	d, 5 years op [.]	tional			
Standard ca cycle	libration					5 y	ears				

1. Optional. Protocol decodes and digital channels (MSO) will not work simultaneously.

Touch

- Design for Touch: 8.5 in capacitive touch improves productivity
- Four annotation & touch simplifies documentation

Discover

- Identify with fast waveform update, isolate with zone trigger
- Uncompromised 1 M wfm/sec update rate
- Hardware zone touch trigger

Evel 1/C 0 <

- 6-in-1 fully upgradable instruments

Solve

- 12 low speed serial protocol trigger and decode
- Gated FFT time/frequency domain correlation

Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes:

- All 3000T X-Series models come with one standard N2843A 500-MHz passive probe (10:1 attenuation) per channel
- N2795A (1 GHz, 10:1, 1 pF, 1 MΩ) is the recommended singled end active probe.
- For your best power rail measurement, use N7020A 2 GHz power rail probe $(1:1, \pm 24 \text{ V} \text{ offset range at } 50 \Omega)$
- See complete list of compatible probes on pages 30 to 31

Accessories

Don't forget options such as the VGA/LAN or GPIB modules, soft carrying case, and rackmount kit.

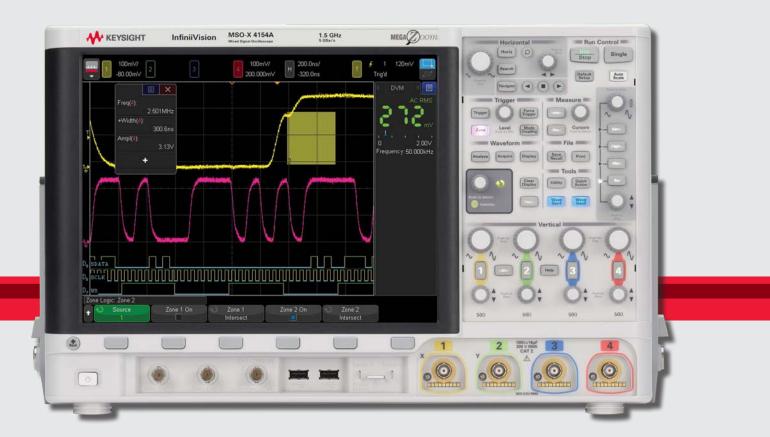
Memory, bandwidth, and DSO-to-MSO upgrades

Protect your investment with the flexibility to upgrade your memory, bandwidth, and add MSO channels at any time.

Applications

Expand your scope's capabilities with our powerful lineup of applications:

- Integrated feature options: WaveGen function generator, 3-digit voltmeter, mask testing, education training kit, and segmented memory
- General and serial protocol applications: MIL-STD 1553/ARINC 429, audio serial (I²S), CAN/CAN-FD, LIN, FlexRay, SENT, UART/RS-232/232/244/485, I²C, SPI, and power analysis
- See our list of applications on pages 26 to 29


www.keysight.com/find/3000Tfamily

InfiniiVision 4000 X-Series Oscilloscopes

200 MHz to 1.5 GHz digital storage and mixed signal scopes

Oscilloscope experience redefined

- Industry-exclusive 12.1-inch capacitive touch display is the largest display in this class of oscilloscopes
- 1,000,000 waveforms per second update rate means you can see more of your signal more of the time
- Exclusive Zone touch triggering simplifies complex triggering to a touch of the screen
- Get 5 instruments in 1: oscilloscope, mixed-signal oscilloscope, serial protocol analyzer, WaveGen dualchannel function/arbitrary generator and 3-digit voltmeter
- Fully upgradable: bandwidth, MSO WaveGen, DVM and measurement applications

		4022A	4024A	4032A	4034A	4052A	4054A	4104A	4154A	
Bandwidth		200	MHz	350	MHz	500	MHz	1 GHz	1.5 GHz	
Sample rate	Э			5 GSa/	's half channels,	2.5 GSa/s full c	hannels			
Channels	DSOX	2	4	2	4	2	4	4	4	
	MSOX	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	4 + 16	4 + 16	
Memory				4	Mpts and segme	ented memory, s	td.			
Display				iy						
Waveform u	update rate		1,000,000 waveforms per second							
Vertical res	olution			8 bits (up to 1	2 bits with avera	iging or high-re	solution mode)			
Vertical sen	sitivity		$1 \text{ mV/div to 5 V/div (1 M\Omega and 50 \Omega)}$							
Integrated instruments	3		MSC), dual-channel v	vaveform/functi	on generator, pr	otocol analyzer,	DVM		
Bandwidth	limit				Approximat	tely 20 MHz				
Maximum ir voltage	nput		1 M	Ω: 300 Vrms, 400	0 Vpk; transient	overvoltage 1.6	kVpk, 50 Ω: ≤ 5	Vrms		
Input imped	lance			1 MΩ: Se	electable 1 MΩ ±	: 1% (16 pF), 50	Ω ± 1.5%			
Timebase ra	ange		2 ns/div	to 50 s/div		1 ns/div t	to 50 s/div	500 ps/div	r to 50 s/div	
Time scale a	accuracy					ppm				
Triggering		Zone t runt, setup	Zone touch trigger, edge, edge then edge (B trigger), pulse width, pattern, OR, rise/fall time, Nth edge runt, setup & hold, video, enhanced video (HDTV) ¹ , USB 2.0 ¹ , ARINC429 ¹ , CAN/CAN-FD/CAN-dbc ¹ , FlexF I ² C ¹ , I ² S ¹ , LIN ¹ , MIL-STD 1553 ¹ , SPI ¹ , UART/RS-232/422/485 ¹							
Connectivit	у	LAN, VGA, USB device x1, USB host x3, std. GPIB, opt.								
Dimensions				45.4 c	cm wide x 29.8 c	m high x 15.6 cr	n deep			
Weight					6.3 kg (13.9 lbs)				

1. Optional.

Experience the capacitive 12-inch touch screen. Drag measurements, cursors and sidebar panels for quick oscilloscope before; simply draw a box around your setup. Use the alpha-numeric touch pad for dramatically faster annotation.

Triggering has never been this easy signal of interest for instantaneous triggering.

Experience the integration. Save your bench space and improve your measurement efficiencies with built-in optional protocol analyzer, MSO, dual-channel WaveGen and DVM.

Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes:

- All 4000 X-Series models come with one standard N2894A 700-MHz passive probe (10:1 attenuation) per channel
- See complete list of compatible probes on pages 30 to 31

Accessories

Don't forget options such as the rackmount kit and soft carrying case.

Bandwidth, and DSO-to-MSO upgrades

Protect your investment with the flexibility to upgrade your bandwidth and add MSO channels at any time.

Applications

Expand your scope's capabilities with our powerful lineup of applications:

- Integrated feature options: Dual-channel WaveGen, 3-digit voltmeter, mask/limit testing and education training kit
- General and serial protocol applications: MIL-STD 1553, ARINC 429, USB 2.0 (low-, full-, and hi-speed), audio serial (I2S), CAN/CAN-FD, LIN, FlexRay, SENT, UART/RS-232/232/244/485, I²C, SPI, Xilinx FPGA dynamic probe, power analysis, USB 2.0 signal quality and HDTV
- See our list of applications on pages 26 to 29

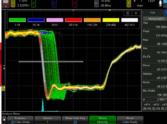
www.keysight.com/find/4000xfamily

InfiniiVision 6000 X-Series Oscilloscopes

1 GHz to 6 GHz digital storage and mixed signal scopes

The new standard in price performance

- Industry-exclusive 12.1-inch capacitive multi-touch display with multi-language voice control
- Standard histogram and color grade features add depth to your signal analysis
- Jitter and real-time eye diagram analysis give you confidence in the signal integrity of your design
- Exclusive Zone simplifies complex triggering to a touch of the scope's screen
- 450,000 waveforms per second update rate gives you a high probability of capturing random and infrequent events
- Get 6 instruments in 1: oscilloscope, mixed-signal oscilloscope, serial protocol analyzer, WaveGen dual-channel function/arbitrary generator, 10-digit counter with totalizer and 3-digit voltmeter
- Fully upgradable: bandwidth, MSO, WaveGen, DVM and measurement applications



		6002A	6004A	6002A+ opt	6004+ opt	6002A+ opt	6004+ opt	6002A+ opt	6004+ opt	
Bandwidth	Opt.	N/A	N/A	DSOX6B10T252BW	DSOX6B10T254BW	DSOX6B10T402BW	DSOX6B10T404BW	DSOX6B10T602BW	DSOX6B10T604BW	
-		10	1 GHz 2.5 GHz 4 GHz						ЭНz	
Sample rate					20 GSa/s half	channels, 10 GSa/s	s full channels			
Channels	DSOX	2	4	2	4	2	4	2	4	
-	MSOX	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	
Memory				≤ 2 GSa	a/s: 4 Mpts half, 2	Mpts all channels;	segmented memo	ry, std.		
				> 2 GSa	/s: 1 Mpts half, 50	0 kpts all channels	; segmented mem	ory, std.		
Display		12.1-inch capacitive multi-touch display								
Waveform upo rate	date									
Vertical resolu	ution			8 b	oits (up to 12 bits w	ith averaging or hi	gh-resolution mod	de)		
Vertical sensit	tivity				1 mV/div to 5 V/d	iv (1 MΩ); 1 mV/div	~ 1 V/div (50 Ω)			
Bandwidth lim	nit			Selectable per cha	annel: 20 MHz, 200) MHz (1 MΩ); 20 M	1Hz, 200 MHz, 1.5	GHz, 3 GHz (50 Ω)		
Maximum inpu voltage	ut			1 MΩ: 300	Vrms, 400 Vpk; tra	ansient overvoltage	e 1.6 kVpk 50 Ω: ±	5 Vpk max		
Input impedar	nce				Selectable:	1 MΩ ± 1% (14 pF),	50 Ω ± 3%			
Timebase ran	ge		s/div to s/div	200 ps/div	0 ps/div to 50 s/div 100 ps/div to 50 s/div					
Time scale ac	curacy				± 1	.6 ppm + aging fact	tor			
Triggering										
Connectivity LAN, VGA, USB device x1, USB host x3, std. GPIB, opt.										
Dimensions					43.8 cm wide	x 29.2 cm high x 1	5.5 cm deep			
Weight						6.8 kg (15 lbs)				

1. Optional.

New performance standard. Get both portability and performance with surprisingly low starting prices and standard hardware bandwidth limit control, achieving a noise floor of 210 uVrms at 1 mV/div (6 GHz) and 115 uVrms at 1 mV/div (1 GHz).

New visualization standard. Quickly troubleshoot your design with color grade to reveal how often a particular event occurs. See an infrequent signal or problematic waveform with a fast waveform update rate and then simply isolate it with Zone touch triggering. New integration standard. Takes multiple-instrument integration to the next level by integrating six instruments in one. Use enhanced color FFT functions and multi-language voice control for hands-free oscilloscope operation.

Visualize signal integrity. Features jitter analysis with clock recovery. Use serial and clock TIE measurements, and view jitter in various plots including jitter: histograms, trend, spectrum and statistics. Application also includes color-graded real-time eye analysis.

Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes:

- All 6000 X-Series models come standard with one N2894A 700-MHz passive probe (10:1 attenuation) per channel
- For high bandwidth probing solutions, choose the award-winning InfiniiMax 1130 Series, N2750A-52A InfiniiMode probes or N2795A/96A single-ended active probes
- See complete list of compatible probes on pages 30 to 31

Accessories

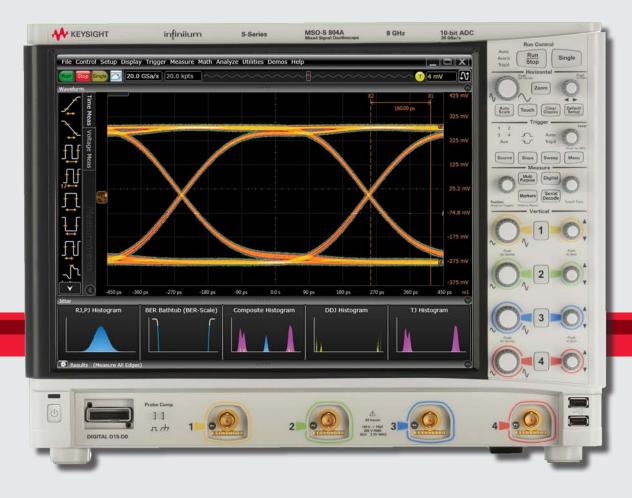
Don't forget options such as the rackmount kit and soft carrying case.

Bandwidth, and DSO-to-MSO upgrades

Protect your investment with the flexibility to upgrade your bandwidth and add MSO channels at any time.

Applications

Expand your scope's capabilities with our powerful lineup of applications:


- Integrated feature options: dual-channel WaveGen, DVM, 10-digit counter (with totalizer), jitter analysis, mask/limit testing and education training kit
- General and serial protocol applications: MIL-STD 1553, ARINC 429, USB 2.0 (low-, full-, and hi-speed), I²S, CAN/ CAN-FD, LIN, FlexRay, SENT, RS-232, UART, I²C, SPI, Xilinx FPGA dynamic probe, power analysis, USB 2.0 signal quality and HDTV
- See our list of applications on pages 26 to 29

Infiniium S-Series Oscilloscopes

500 MHz to 8 GHz digital storage and mixed signal scopes

The new standard in superior measurements

- The industry's fastest 10-bit ADC and low-noise front-end technology work together to provide the industry's best signal integrity
- The advanced frame with a solid state drive (SSD) speeds boot-up time
- Provides bandwidth, memory, triggering and signal fidelity for debugging, characterizing and analyzing a wide variety of analog, serial, digital and RF signals
- The large 15-inch capacitive touch screen provides easy multi-touch usability

		054A	104A	204A	254A	404A	604A	804A
Bandwidth		500 MHz	1 GHz	2 GHz	2.5 GHz	4 GHz	6 GHz	8 GHz
Sample rate			2	0 GSa/s on half o	channels, 10 GSa	a/s on full channe	əls	
Channels	DSOS	4	4	4	4	4	4	4
	MSOS	4 + 16	4 + 16	4 + 16	4 + 16	4 + 16	4 + 16	4 + 16
Memory (4-ch)				50 Mp	ots, std, 800 Mp	ts, opt.		^
Display		15" XGA capacitive touch screen						
Vertical resoluti	on	10 bits (Up to 12 bits with high-resolution mode)						
Vertical sensitiv	ity	50 Ω: 1 mV/div to 1 V/div, 1 MΩ: 1 mV/div to 5 V/div						
Bandwidth limit			20 MHz, 200	MHz custom and	d increments of §	500 MHz, up to m	nax bandwidth	
Maximum input				50 Ω:	5 Vpp, 1 MΩ: 30	0 Vrms		
Input impedance	9			50 Ω: ± 3.5°	%, 1 MΩ: ± 1% (1	4 pF typical)		
Timebase range				5	5 ps/div to 50 s/c	liv		
Time scale accu	racy			:	± (100 + 75 ²) pp	b		
Triggering		3-stage sequence trigger: 2-stage A-B hardware and 1-stage InfiniiScan software trigger. Supported triggers: Edge, edge transition, edge then edge, glitch, line, pulse width, runt, timeout, patter/pulse range, state, setup/hold, window, protocol ¹						
Connectivity LAN, VGA, DisplayPort, USB device x6, USB host x1								
Dimensions 43 cm wide x 33 cm high x 23 cm deep								
Weight					12 kg (26.5 lbs)			

1. Optional.

2. Years since calibration.

Industry's best signal integrity. A low-noise front end and correction filters ensure flat frequency response.

Most advanced platform. A next-generation user-interface and powerful motherboard provide fast computations even with advanced math and deep memory enabled.

Broadest range of capability. Features 16 MSO channels, more than 50 automated measurements, 16 math functions, gating and spectral viewer.

Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes:

- All models come with four N2873A 10:1, 500 MHz miniature passive probes, and MSO models include a flying lead MSO cable set
- For high bandwidth probing solutions, choose the award-winning InfiniiMax 1130A Series, N2750A-52A InfiniiMode probes or N2795A/96A single-ended active probes
- See our complete list of compatible probes on pages 30 to 31

Accessories

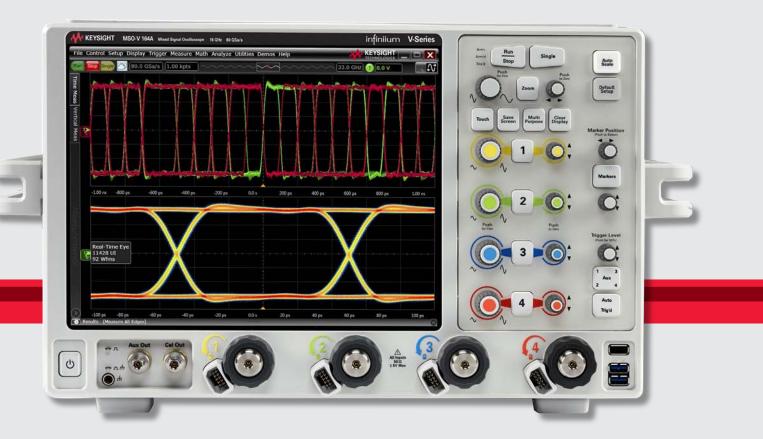
Don't forget options such as the removable SSD and rackmount kit

Bandwidth, memory and DSO-to-MSO upgrades

Protect your investment with the flexibility to upgrade your bandwidth and add MSO channels at any time.

Applications

Expand your scope's capabilities with our powerful lineup of applications:

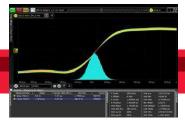

- Compliance testing: USB 2.0, Ethernet, DDR 1/2/3, MIPI D-PHY and more
- Protocol analysis: I²C, eSPI, CAN, RS-232/UART, USB, PCI Express, JTAG, 8B/10B, MIPI D-PHY, SVID, DigRF and others
- Other: Jitter, InfiniiScan, and VSA
- See our complete list of applications on pages 26 to 29

Infiniium V-Series Oscilloscopes

8 GHz to 33 GHz high-performance real-time lab scopes

Achieve clarity faster with your design validation

- Best-in-class signal integrity for superior measurement accuracy
- Industry's longest 160-bit hardware serial trigger
- Highest-performance digital channels at 20 GSa/s
- Industry's broadest software and application solutions
- Most advanced 30 GHz oscilloscope probing system



DSO and DSA mo	dels	V084A	V134A	V164A	V204A	V254A	V334A				
Bandwidth		8 GHz	13 GHz	16 GHz	20 GHz	25 GHz	33 GHz				
Sample rate		80 GSa/s on half channels, 40 GSa/s on full channels									
Channels	DSO	4	4	4	4	4	4				
	MSO	4 + 16 4 + 16 4 + 16 4 + 16 4 + 16 4 + 16									
Display				12.1" XGA capaci	tive touch screen						
Display update rat	te		> 400,000 v	vaveforms per secor	nd (in segmented me	emory mode)					
Memory			50 Mpts	s, std. Up to 2 Gpts,	opt. (100 Mpts std.	on DSA)					
Vertical resolution	n		8 bits (≥	12 bits with high-re	esolution mode or av	eraging)					
Vertical sensitivity	у			> 50 mV/div t	to 100 mV/div						
Sample clock jitte	er			< 10)0 fs						
Maximum input vo	oltage		± 5 V								
Input impedance		50 Ω, ± 3%									
Timebase range				2 ps/div to 5 s	s/div real-time						
Time scale accura	асу		± 0.1 ppm (ii	mmediately after cal	libration), ± 0.1 ppm	/year (aging)					
Triggering				r: 2-stage A-B hardv							
		Suppo	Supported triggers: Edge, edge transition, edge then edge, glitch, pulse width, runt, timeout,								
				e, setup and hold, w			1				
Typical noise floor		1.04	1.09	1.32	1.54	1.73	2.03				
Maximum data tra	ansfer rate			200 M	//Sa/s						
Dimensions		26.6 cm wide x 43.6 cm high x 49.2 cm deep									
Weight 23.7 kg (52.2 lbs)											
Power			100 to	240 VAC at 50/60 I	Hz; input power 800	Watts					

1. Optional.

User-defined application software allows automated compliance testing on proprietary buses. Quickly program and automate any set of measurements with an interface similar to Keysight compliance test software while emerging test standards solidify.

Lowest real-time scope jitter measurement floor. Your signal rise times are more accurately depicted. Quickly characterize and compensate the frequency response. PrecisionProbe uses its 200 GHz indium phosphide process to create a fast edge for characterization.

sate Certified compliance testing. Use nProbe one of the many available compliance application software packages (to test standards such as USB 3.0).

Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes:

- Industry's first 30 GHz InfiniiMax III probing system and new InfiniiMax III+ with InfiniiMode feature for measuring differential, single-ended and common mode measurements with a single probe connection
- See our complete list of compatible probes on pages 30 to 31

Accessories

Don't forget options such as the rackmount kit and transit case.

Memory

Increase memory depth at any time.

Bandwidth

Protect your investment with bandwidth upgrades after purchase.

Applications

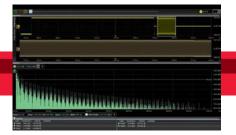
Expand your scope's capabilities with our powerful lineup of applications:

- Analysis options include jitter and eye analysis, user defined function, MATLAB and many more
- Compliance options include DDR 1/2/3/4, PCI Express, HDMI, DisplayPort, SATA, SAS, MIPI D-PHY and USB 3.0
- Transport your scope application license from one Infiniium to another with the application server license
- User-defined applications are available today for: LVDS, JESD204B, MIPI M-PHY, CPRI, InfiniBand and Fiber Channel 16/32G.
- See our complete list of applications on page 26 to 29

www.keysight.com/find/Vfamily

Infiniium Z-Series Oscilloscopes

20 GHz to 63 GHz high-performance real-time lab scopes


Achieve new extremes with 63 GHz on 2 channels and 33 GHz on 4 channels

- Up to 2-channel 63 GHz or 4-channel bandwidth with 33 GHz in a single frame
- Join multiple Z-Series oscilloscopes together to form a system of 40 channels with less than 150 fs (rms) of inter-scope channel jitter
- The industry's lowest noise and jitter measurement floor
- The industry's deepest memory at 2 Gpts per channel
- Capacitive touch screen and touch-screen-friendly controls improve your user experience
- USB 3.0 offload capability enables more than 200 MB/s offload speed

DSO and DSA models	Z204A	Z254A	Z334A	Z504A	Z594A	Z592A	Z632A	Z634A
Bandwidth	20 GHz	25 GHz	33 GHz	50 GHz	59 GHz	59 GHz	63 GHz	63 GHz
Sample rate	160 GSa/s on half channels, 80 GSa/s on full channels							
Channels	4 2							4
Display	15.4" color XGA TFT-LCD with multi-touch capacitive touch screen							
Display update rate		> 400,000 waveforms per second (in segmented memory mode)						
Memory		50 Mpts, std. Up to 2 Gpts, opt. (100 Mpts std. on DSA)						
Vertical resolution		8 bits (≥ 12 bits with averaging)						
Vertical sensitivity		1 mV/div to 1 V/div						
Maximum input voltage	± 5 V							
Input impedance	50 Ω, ± 3%							
Timebase range	2 ps/div to 5 s/div real-time							
Time scale accuracy	± [0.1 ppm (immediately after calibration) ± 0.1 ppm/year (aging)]							
Triggering	3-stage sequence trigger: 2-stage A-B hardware and 1-stage InfiniiScan software trigger. Supported triggers: Edge, edge transition, edge then edge, glitch, pulse width, runt, timeout, pattern/pulse range, state, window, video							
Typical noise floor (% of noise on screen)	0.39%	0.45%	0.54%	0.75%	0.80%	0.80%	0.83%	0.83%
Sample clock jitter				75	ō fs			
Dimensions			50.8 c	m wide x 33.8 c	m high x 49.2 cr	n deep		
Weight				32.20 kg	g (71 lbs)			
Power			100 - 240 VAC	at 50/60 Hz; ma	ximum input po	wer 1350 Watts	8	

1. Optional.

Fast Fourier Transform (FFT) includes powerful tools for extreme frequency domain (spectrum) analysis. Use the FFT to compute both magnitude and phase, and use multiple FFT windows, peak search and navigation, amplitude modulation, FFT mask triggers and gated FFT measurements to analyze waveforms.

Use PrecisionProbe advanced to get full S21 characterization of cables up to 65 GHz, in addition to spectrum and complex modulation measurements. The simple network analysis saves you time and improves measurement accuracy by automatically compensating for both magnitude and phase loss caused by cables.

Get deep insight into your digital designs. EZJIT Plus features two methods to properly separate the jitter into random and deterministic components. If you have bounded uncorrelated jitter, simply use Keysight's new tail-fit algorithm; otherwise Keysight's spectral method and 75 fs of sample clock jitter ensure the most accurate measurement.

Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes:

 Industry's first 30 GHz InfiniiMax III probing system

- See our complete list of compatible probes on page 30 to 31

Accessories

Don't forget options such as the rackmount kit and transit case.

Memory

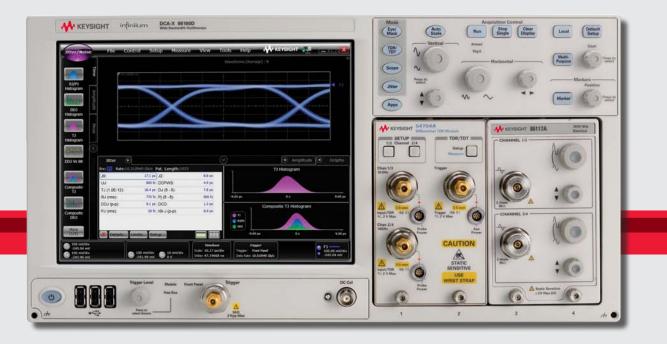
Increase memory depth at any time.

Bandwidth

Protect your investment with bandwidth upgrades after purchase.

Applications

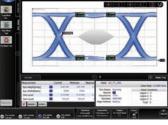
Expand your scope's capabilities with our powerful lineup of applications:


- Analysis options include jitter and eye analysis, user-defined function, MATLAB and many more
- Compliance options include DDR 1/2/3/4, PCI Express, HDMI, DisplayPort, SATA, SAS, MIPI D-PHY and USB 3.0
- Transport your scope application license from one Infiniium to another with Keysight's transportable licenses
- See our list of applications on page 26 to 29

Infiniium 86100D DCA-X Series Oscilloscopes

DC to > 90 GHz wideband sampling scopes

Engineered for precise, accurate high-speed electrical, TDR/TDT and optical analysis


- Four powerful instruments in one: High-bandwidth scope, digital communications analyzer, time domain reflectometer and jitter analyzer
- Wide bandwidth with the lowest residual jitter and noise for the highest precision waveforms
- The industry standard for analysis of optical communication signals
- Calibrated reference receivers for optical transceiver compliance test
- Modular platform enables optical, electrical, TDR/TDT and S-parameter measurements
- Advanced jitter and amplitude analysis at the push of a button
- Jitter spectrum, phase noise and jitter transfer measurements on both electrical and optical signals
- Integrated de-embedding, embedding and equalization capability
- Up to 16 electrical, 16 TDR or 8 optical channels per mainframe
- Ultra-low timebase jitter (random jitter < 100 fs rms typical) on up to 16 channels

Models matching your applications

86100D Infiniium DCA-X m	ainframe
Electrical 1 to 14.2 Gb/s	Highest precision view of serial bus waveforms
86112A	Dual channel electrical > 20 GHz
83496B	Electrical clock recovery (and PLL analysis)
86108B	Dual 35/50 GHz channels, jitter < 45 fs, internal clock recovery
Electrical 10 to > 43 Gb/s	Electrical signals for 40/100G Ethernet, SONET/SDH
86118A	Dual remote heads 70 GHz
86107A	Precision timebase (jitter < 100 fs)
86108B	Dual 35/50 GHz channels, jitter < 45 fs, internal CR to 32 Gb/s
86117A	Dual channel electrical > 50 GHz
N1045A	Dual/quad 60 GHz channels, remote heads
Optical 1 to 14.2 Gb/s	FibreChannel, Ethernet, SONET/SDH, PON
86105C	9 GHz optical channel, 20 GHz electrical channel
83496B	Optical clock recovery (single-mode and multimode)
86105D	20/34 GHz optical channel, 35/50 GHz electrical channel
86115D	20/35 GHz optical, multi-channel
Optical 10 to > 43 Gb/s	40/100G Ethernet, SONET/SDH
86116C	65 GHz optical channel, 90 GHz electrical channel
86107A	Precision timebase (jitter < 100 fs)
TDR	Serial bus standards – PCIe, SATA, SAS, USB, S-parameters
54754A	Differential TDR, dual 18 GHz channels
N1055A	Differential TDR, 35/50 GHz bandwidth, 2/4 channel, remote heads

Full-function oscilloscope. Bandwidth of 65 GHz optical and > 90 GHz electrical ensures the most accurate waveform measurements.

Eve diagram analysis. Fast and accurate transmitter characterization using eye diagram analysis and automated mask margin measurements.

Advanced jitter and amplitude analysis. Accurate decomposition of impairments provides compliant total jitter (TJ) results and insight into root cause of eye components and channels. closure.

Time domain reflectometer. Measure both impedance and S-parameters, and verify transmission quality on cables,

Scope additions and enhancements

Probes

Improve your measurement reliability with our comprehensive selection of probes.

Options

Mainframe options include an enhanced trigger, precision timebase, GPIB interface, removable hard drive and signal processing capabilities such as equalization, de-embedding and embedding of waveforms.

Modules

Choose from an extensive list of optical, electrical, TDR/TDT, dual/quad electric channel, trigger and clock recovery modules.

Applications

Expand your scope's capabilities with our powerful lineup of applications:

- Analysis options include jitter and eye analysis, user-defined function, jitter transfer function (JTF), S-parameters, MATLAB and many more
- Compliance and debug options include OIF-CEI 3.1 covering 6G/11G/25G and 28G VSR/MR, SFF-8431 (SFP+) and IEEE 802.3 10G/40G/100G Ethernet

Applications: Engineered to Turn Measurements Into Answers

You need more than data from your scope - you want fast, accurate answers to your questions.

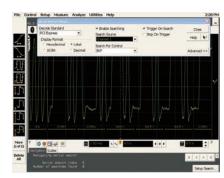
Many scopes can churn out reams of data. But when you're looking for meaningful insight into designs under development, Keysight offers the broadest selection of oscilloscope application solutions in the industry.

We deliver more than 150 powerful application packages for debug, analysis, compliance and characterization.

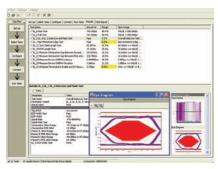
Whether you're debugging low-speed serial bus operation or FPGA functionality; focused on signal integrity; or ensuring compliance to industry standards, Keysight has solutions to help you get to accurate answers more quickly.

Speed debug as you deploy FPGAs or debug serial bus designs with our innovative solutions.

Our integrated mixed-signal oscilloscope technology allows us to offer unique solutions like our FPGA dynamic probe to let you see inside your FPGA for faster debug. Also, our protocol level triggers and displays help you resolve the physical layer root cause of issues you discover at the protocol level.

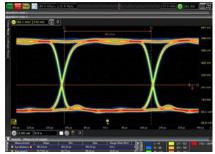

Take advantage of the expertise Keysight gains by participating in key industry standards bodies.

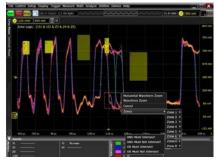
Our engineers participate with and sit on the board of directors of many standards groups, including the JEDEC Solid State Technology Association, the Video Electronics Standards Association (VESA) and the Peripheral Component Interconnect Special Interest Group (PCI-SIG). We help define the test standards so we can give you consistent measurement results and support you as you deploy these emerging technologies for your success.


Make your job simpler with automated setups and one-button compliance testing for more than 30 applications.

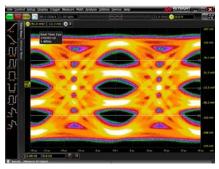
We make using our solutions easy so busy engineers can offload tedious characterization and still get accurate results. A test setup wizard guides you through selection, configuration, connection, execution and results reporting. The results reports include configuration, measurements made, pass/fail status, margin analysis and waveforms.

We also offer user-definable application software that allows automated measurements for compliance testing on proprietary buses or while emerging test standards solidify.


The PCI Express[®] electrical performance validation and compliance software lets you test devices to ensure compliance with the PCIe 1.1 and PCIe 2.0 electrical specs for add-in cards and motherboards.

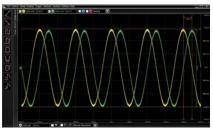

The USB 2.0 compliance test software makes USB signal integrity testing as simple as capturing the signals with your scope, eliminating the need to transfer waveforms to your PC.

Oscilloscope Compliance and Characterization Solutions

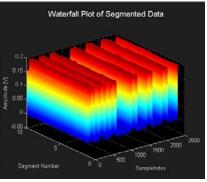

	Model number	Oscilloscope
10G attachment unit interface (XAUI)	N5431A/B	9000, S-Series, 90000, V-Series, Z-Series
10/40GBASE-KR/KR4	N8814B, N1081A	90000, V-Series, Z-Series, 86100D
100GBASE-CR4	N8830A, N1084A	90000, V-Series, Z-Series, 86100D
100GBASE-KR4	N8829A, N1084A	90000, V-Series, Z-Series, 86100D
40/100 GBASE-CR 4/10	N8828A, N1082A	90000, V-Series, Z-Series, 86100D
BroadR-Reach	N6467A/B	9000, S-Series, 90000, V-Series, Z-Series
DDR1 and LPDDR1	U7233A/B	9000, S-Series, 90000, V-Series, Z-Series
DDR2 and LPDDR2	N5413B/C	9000, S-Series, 90000, V-Series, Z-Series
DDR3 and LPDDR3	U7231B/C	9000, S-Series, 90000, V-Series, Z-Series
DDR4 and LPDDR4	N6462A/B	9000, S-Series, 90000, V-Series, Z-Series
DisplayPort	U7232C	90000, V-Series, Z-Series
DisplayPort 1.3	U7232E	90000, V-Series, Z-Series
eMMC	N6465A/B	9000, S-Series, 90000, V-Series, Z-Series
Ethernet 10GBase-T, MGBASE-T	U7236A/B	9000, S-Series, 90000, V-Series, Z-Series
Ethernet/EEE 10/100/1000Base-T	N5392B/C	9000, S-Series, 90000, V-Series, Z-Series
Ethernet XLAUI/CAUI/nPPI	N1083A	86100D
GDDR5	U7245A	9000, S-Series, 90000, V-Series, Z-Series
HDMI 2.0	N5399C/D	9000, S-Series, 90000, V-Series, Z-Series
HSIC	U7248A/B	9000, S-Series, 90000, V-Series, Z-Series
MHL 3.0	N6460B	90000, V-Series, Z-Series
MIPI [®] D-PHY SM	U7238C/D	9000, S-Series, 90000, V-Series, Z-Series
MIPI M-PHY®	U7249C/D	9000, S-Series, 90000, V-Series, Z-Series
MIPI C-PHY SM	U7250A	90000, V-Series, Z-Series
MOST	N6466A/B	9000, S-Series, 90000, V-Series, Z-Series
OIF-CEI 3.1 with 28G-VSR/MR	N1012A	86100D
PCI Express Gen 3	N5393D/E	S-Series, 90000, V-Series, Z-Series
SD UHS-I	U7246A/B	9000, S-Series, 90000, V-Series, Z-Series
SD UHS-II	N6461A/B	9000, S-Series, 90000, V-Series, Z-Series
Serial ATA Gen 3	N5411B	90000, V-Series, Z-Series
Serial attached SCSI (SAS-3)	N5412D	90000, V-Series, Z-Series
SFP+	N6468A, N1014A	90000, V-Series, Z-Series, 86100D
Thunderbolt	N6463B	90000, V-Series, Z-Series
USB 2.0	N5416A/B	9000, S-Series, 90000, Z-Series
USB 3.1	U7243B	90000, V-Series, Z-Series
PAM-4	N8836A, N1085A	90000, V-Series, Z-Series, 86100D

HDMI validation and compliance software gives you a fast way to verify and debug designs for set-top boxes, digital video recorders, DVD players, entertainment systems and motherboards.

The DDR2 compliance test application provides a fast and easy way to test, debug and characterize your DDR2 designs and includes crucial measurements, such as eye-diagram, mask testing and ringing.

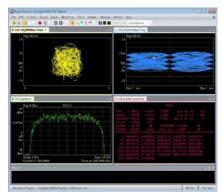

PAM4 compliance test application performs accurate analysis on electrical PAM-4 signals.

Oscilloscope Software Applications


	Model number	Oscilloscope solutions
64b/66B 10GBase-KR Ethernet decode	N8815A	90000, V-Series, Z-Series
Advanced EYE analysis (jitter on PRBS31)	86100DU-401	86100D Series
BenchLink waveform builder pro and basic	33503A	2000X, 3000AX, 3000TX, 4000X Series
Built-in function and arbitrary waveform generator	DSOX2WAVEGEN, DSOX3WAVEGEN, DSOX4WAVEGEN2, DSOX6WAVEGEN2	2000X, 3000AX, 3000TX, 4000X (dual channel), 6000X (dual channel) Series
Calibration pulse generator	N2806A	9000, S-Series, 90000, V-Series, Z-Series
CAN/CAN-FD/LIN trigger and decode	DSOX2AUTO ¹ , DSOX3AUTO ¹ , DSOX3TAUTO, DSOX4AUTO, DSOX6AUTO, N8803A, N8803B	2000X ¹ , 3000AX ¹ , 3000TX, 4000X, 6000X, 9000, S-Series, 90000, V-Series, Z-Series
Communication mask test kit	E2625A	9000, S-Series, 90000, V-Series, Z-Series
Educators Training Kit	DSOXEDK	2000X, 3000AX, 3000TX, 4000X, 6000X Series
eSPI triggering and decode	N8835A	S-Series, 90000, V-Series
EZJIT, EZJIT Plus and EZJIT Complete jitter analysis	N8823A, E2681A, N5400A	9000, S-Series, 90000, V-Series, Z-Series
FlexDCA	N1010A	86100 Series
FlexRay	N8803A/B	9000, S-Series, 90000, V-Series, Z-Series
FlexRay triggering and decode	DSOX3FLEX, DSOX4FLEX, DSOX6FLEX, N5432C	3000AX, 3000TX, 4000X, 6000X Series
FPGA dynamic probe - Xilinx	DSOX4FPGAX, DSOX6FPGAX, N5406A, N5397A	4000X, 6000X, 9000, S-Series, 90000X Series
Frequency domain analysis	N8832A	9000, S-Series, 90000, V-Series, Z-Series
High-speed serial data analysis and clock recovery	E2688A, N5384A	9000, S-Series, 90000, V-Series, Z-Series
HSIC triggering and decode	N5464B, N5464A	9000, S-Series, 90000, V-Series, Z-Series
I ² C/SPI serial decode	DSOX2EMBD, DSOX3EMBD, DSOX4EMBD, DSOX6EMBD, N5391A, N5391B	2000X, 3000AX, 3000TX, 4000X, 6000X, 9000, S-Series, 90000, V-Series, Z-Series
I ² S triggering and decode	DSOX3AUDIO, DSOX4AUDIO, DSOX6AUDIO, N5468A	3000AX, 3000TX, 4000X, 6000X Series
InfiniiScan	N5414B, N5415B	9000, S-Series, 90000, V-Series, Z-Series (zone trigger is standard on 3000TX, 4000X and 6000X Series)
InfiniiSim waveform transformation	N5465A, 86100D-SIM, N1010A-SIM	9000, S-Series, 90000, V-Series, Z-Series, 86100 Series
Infiniium user-defined function	N8806A, N5430A/B	9000, S, 90000, V-Series, Z-Series
Infiniium Offline and bundles	A0068N	2000X, 3000AX, 3000TX, 4000X, 6000X, 9000, S-Series, 90000, V-Series, Z-Series
Integrated digital voltmeter	DSOXDVM, DSOXT3DVMCTR, DSOXDVMCTR	2000X, 3000AX, 3000TX, 4000X, 6000X Series (10-digit counter for 6000X)
Jitter and real-time eye analysis	DSOX6JITTER	6000X Series
Jitter and amplitude analysis	86100D-200/300	86100 Series
JTAG triggering and decode	N8817A/B	9000, S-Series, 90000, Z-Series
Mask/waveform limit testing	DSOX2MASK, DSOX3MASK, DSOX4MASK, DSOX6MASK	2000X, 3000AX, 3000TX, 4000X, 6000X Series (standard on Infiniium Series)
MATLAB data analysis	N6174A, N6175A, N8831A	9000, S-Series, 90000, Z-Series, 86100 Series
Multiscope	N8834A	S-Series, 90000, V-Series, Z-Series

CAN/LIN triggering and hardware-accelerated decode helps you quickly find and debug errors and signal integrity problems on CAN and LIN serial buses.

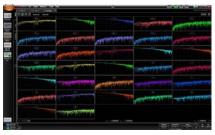
View and analyze waveforms anywhere your PC goes. Infiniium Offline includes powerful viewing and analysis tools based on Keysight's Infiniium scope user interface.



Install MATLAB on your oscilloscope, and add your favorite .m scripts as math function operators. Export and analyze oscilloscope data directly with MATLAB.

1. Does not include CAN-FD.

Oscilloscope software applications (Continued)


	Model number	Oscilloscope solutions
MIL-STD 1553 and ARINC429 serial triggering and analysis	DSOX3AERO, DSOX4AERO, DSOX6AERO	3000AX, 3000TX, 4000X, 6000X Series
MIPI DigRF [®] v4 (M-PHY) triggering and decode	N8807A/B	9000, S-Series, 90000, V-Series, Z-Series
MIPI D-PHY triggering and decode	N8802A/B	9000, S-Series, 90000, V-Series, Z-Series
MIPI LLI (M-PHY) triggering and decode	N8809A/B	9000, S-Series, 90000, V-Series, Z-Series
MIPI UniPro SM (M-PHY) triggering and decode	N8808A/B	9000, S-Series, 90000, V-Series, Z-Series
MIPI UFS (M-PHY) triggering and decode	N8818A/B	9000, S-Series, 90000, V-Series, Z-Series
MIPI SSIC (M-PHY) triggering and decode	N8819A/B	9000, S-Series, 90000, V-Series, Z-Series
MIPI CSI-3 (M-PHY) triggering and decode	N8820A/B	9000, S-Series, 90000, V-Series, Z-Series
MIPI RFFE triggering and decode	N8824A/B	9000, S-Series, 90000, V-Series, Z-Series
PAM-4 analysis	N8827A/B	S-Series, 90000, V-Series, Z-Series
PCI Express Gen 3 protocol viewer	N8816A	90000, V-Series, Z-Series
PCI Express Gen 1 and 2 triggering and decode	N5463A/B	9000, S-Series, 90000, V-Series, Z-Series
Phase locked loop and jitter spectrum measurement software	86100DU-400	86100D Series
Power measurement and analysis	DSOX3PWR, DSOX4PWR, DSOX6PWR, U1882B	3000AX, 3000TX, 4000X, 6000X, 9000, S-Series, 90000, V-Series, Z-Series
Precison Probe	N2808A, N2809A	9000, S-Series, 90000, V-Series, Z-Series
RS-232/UART triggering and decode	DSOX2COMP, DSOX3COMP, DSOX4COMP, DSOX6COMP, N5464A, N5462B	2000X, 3000AX, 3000TX, 4000X, 6000X, 9000, S-Series, 90000, V-Series, Z-Series
SATA triggering and decode	N8801A/B	9000, S-Series, 90000, V-Series, Z-Series
Segmented memory	DSOX2SGM, DSOX3SGM	2000X, 3000AX (std. on Infiniium and InfiniiVision 3000TX/4000X/6000X Series)
Sensor (SENT) triggering and decode	DSOXT3SENSOR, DSOX4SENSOR, DSOX6SENSOR	3000TX, 4000X, 6000X Series
Serial data equalization	N5461A/B	9000, S-Series, 90000, V-Series, Z-Series
Signal analyzer	W2650A	9000, S-Series, 90000, V-Series, Z-Series
S-parameter measurements	86100D-202	86100D Series
Spectrum visualizer	64997A, 64996A	2000X, 3000AX, 3000TX, 4000X, 9000, S-Series, 90000, V-Series, Z-Series
SVID triggering and decode	N8812A/B	9000, S-Series, 90000, V-Series, Z-Series
TDR/TDT measurements	86100D, 54754A, N1055A	86100 Series
USB 2.0 full/low speed serial decode and triggering	DSOX4USBFL, DSOX6USBFL	4000X, 6000X Series
USB 2.0 high-speed serial decode and triggering	DSOX4USBH, DSOX6USBH	4000X, 6000X Series
USB 2.0 signal quality	DSOX4USBSQ, DSOX6USBSQ	4000X, 6000X Series
USB 2.0 triggering and decode	N5464A/B	9000, S-Series, 90000, V-Series, Z-Series
USB 3.0 triggering and decode	N8805A/B	9000, S-Series, 90000, V-Series, Z-Series
USB-PD triggering and decode	N8837A	S-Series, 90000, V-Series
USB 3.1 triggering and decode	N8821A/B	S-Series, 90000, V-Series
User-defined application	N1019A, N5467B/C	86100D, 9000, S-Series, 90000, V-Series, Z-Series
Vector signal analysis	89601B	3000AX, 3000TX, 4000X, 6000X, 9000, S-Series, 90000, V-Series, Z-Series
Video triggering and analysis	DSOX3VID, DSOX4VID, DSOX6VID	3000AX, 3000TX, 4000X, 6000X Series

Mask/waveform limit testing provides a fast and easy way to test your signals to specified standards and uncover unexpected signal anomalies such as glitches.

1 00 V/ 22	1 🕤 Vm 0				_	_	_	_	_
11.00 W/ 12	a my		[1,64 Y						
		1001							
		THE OWNER WHEN	0.01.01	100000000000000000000000000000000000000	THEORY OF THE	10111101			-
		1941			0.4				
_		-	-	Bilder and Barry	and the second	-			
		in the second			and the second second	فاسترا زنده			
R1									
				342 un 542 un	342 pm	942 pm	111.00	134 m	
-458 pp -358			42 un		ow pi		E LA MI		
	n .510 p 42.1000000 p				i naz pi	1997 (2)	2.04.993		
200 µs/ S	42.1000000 p				. Add				
200 µs/ S	42.1000000 p		• • •)	Ramu KRC		Detailt	1000	
200 µs/ S	42.1000000 (r 48.2.0		• • •	nt Powlad		le le			
200 (04.00) [5 ottool 1 listing 1 ot True -1.65262 (5 20.64710 (6	42 1000000 (r 58 2.0 66 2.0 Poc	S C) 💮 🖟)	Frank CRC		Details	Tana a	-
200 µ4/ 5	42.1000000 (r /58.2.0 /058.2.0 /oc /561.0 /058.2.0 /oc /058.2.0 /oc /0	S C C) 💮 🖟	nt Powlad	Fame 010 02 (60 9100 (<mark>00) -</mark> •	Details -: Generated - Diractor	Tana a	-
200 (04.00) [5 ottool 1 listing 1 ot True -1.65262 (5 20.64710 (6	42.1000000 p 58.2.0 USE 2.0 Poo SETUP DATAU ACK DI	S C) 💮 🖟	nt Powlad	Fame 010 02 (G0	<mark>00) -</mark> •	Details -: Generated - Diractor	Pickls	
200 µK 5 strond 2 instruct 14.65262 µ6 23.86272 µ6 111.8536 µ6 111.8536 µ6 128.00276 µ6	42.1000000 (r 56.2.0 56109 04140 400 10 10 10 10 10 10 10 10 10 10 10 10 1) 💮 🖟	nt Powlad	Frame CASC 02 (50 9400 (02 (50		Details Generated Director Second L Constance Cons	Pickls	
200 µ4. 5	42.1000000 p 58.2.0 USE 2.0 Poo SETUP DATAU ACK DI	S C C) 💮 🖟	nt Powlad	Fame 010 02 (60 9100		Details Constant Constant Factor 1 Constant Constan	Fields argth = 111	
200 µK 5 strond 2 instruct 14.65262 µ6 23.86272 µ6 111.8536 µ6 111.8536 µ6 128.00276 µ6	42 1000000 (r xi8 2.0 558 2.0 fcc 557.09 BAYAU NCK IN NAK IN NAK		e Endroi e 6	nt Powlad	Frame CASC 02 (50 9400 (02 (50		Details Generated Director Second L Constance Cons	Fields argth = 111	
200 (K) 5 5 5 5 5 5 5 5 5 5 5 5 5 5	42 1000000 (r 158 2.0 Poc SETUP DATAU MCK IN NAK DN		e Endroi e 6	nt Powlad	Frame CASC 02 (50 9400 (02 (50		Details Constant Constant Factor 1 Constant Constan	Fields argth = 111	
200 ms/ 5 50 ms/ 5 50,547 ms/ 50,547 ms/ 50,547 ms/ 50,547 ms/ 51,558 ms/ 111,353 R mi 125,546 0 ms/ 135,546 0 ms/ 1	42 1000000 pr 56 2.0 156 2.0 Ps 56 7.0 56 7.0 56 7.0 10 10 10 10 10 10 10 10 10 1		o C C	nt Powlad	Frame CRC 94100 02 (50 02 (50		Details Constant Constant Factor 1 Constant Constan	Fields argth = 111	
200 HSC 5 14.65262 LB 25.94750 LB 25.94750 LB 111.95262 LB 111.9526 LB 111.95	42 1000000 (r 158 2.0 55709 055709 055740 05775700000000	S C C	o C C	nt Powlad	Frame CRC 94100 02 (50 02 (50		Details Constant Constant Factor 1 Constant Constan	Fields argth = 88 8 00 03 30 05	
200 (HS) (S) 14.65292 (B) 20.54730 (B) 20.54730 (B) 20.54730 (B) 20.54730 (B) 111.35756 (B) 112.50276 (B) 125.50270 (B) 235.5010 (B) 235.5010 (B) 235.5010 (B) 235.5010 (B) 235.5010 (B) 235.5010 (B) 235.5010 (B) 235.5010 (B) 235.5010 (B) 235.5000 (B)	42 1000000 pr 56 2.0 156 2.0 Ps 56 7.0 56 7.0 56 7.0 10 10 10 10 10 10 10 10 10 1		Carlos Ca	nt Powlad	Frame CRC 02 (G0 0404) 02 (G0 02 (G0 02 (G0		Details Constant Constant Factor 1 Constant Constan	Fields argth = 111	
200 HSI [5] 100 Elisten 100 Elisten 20.3470 JB 20.3470 JB 20.3470 JB 111.5320 JB 125.34870 JB 135.44870 JB 135.44870 JB 135.44870 JB 135.54870 JB 235.53218 JB 235.53218 JB 235.53218 JB	42:1000000 pr 56:2:0 foo SETUP 04/940 04/940 10 10 10 10 10 10 10 10 10 1		Carlos Ca	nt Powlad	Frame CRC 02.(50 9400) 02.050 02.(50 02.(50 02.(50 02.(50		Details Constant Constant Factor 1 Constant Constan	Fields argth = 88 8 00 03 30 05	
200 µK 5 4.45262 µS 20.54700 µK 20.54700 µK 20.54700 µK 20.54700 µK 111.35756 µK 135.36487 µK 135.36487 µK 135.36487 µK 235.03949 µK 235.52318 µK	42.10000101 p 555 2.0 155 2.0 Foo SETUP DATAU ACK IN NAK IN NAK IN NAK IN NAK IN NAK IN NAK IN NAK		Erduo 0 0 0 0 0	nt Powlad	Frame CRC 02 (G0 0404) 02 (G0 02 (G0 02 (G0		Details Concentration Details Packet to Concentration Packet Concentration Packet Concentration Concen	Fields argth = 88 8 00 03 30 05	

USB serial trigger and decode provides powerful time-correlated views of waveforms and symbols to the bit level, making it easy to isolate communication faults to logic or analog sources.

86100D Option 202 performs single-ended and mixed-mode S-parameter measurements on up to 16 ports. Quickly and easily save S-parameter files.

Probes & Accessories: Engineered for Signal Access and Measurement Accuracy

To get top performance from your scope, you need the right probe for your application

Selecting the best probe for the job ensures you can access your signals and make reliable measurements. To complement our scopes, Keysight offers a broad family of probes and accessories. Solutions range from simple, inexpensive passive probes to state-of-the-art high-frequency active probes that meet your toughest probing challenges.

Passive probes

These are the most durable, economical and widely-used probes for doing generalpurpose probing with an oscilloscope.

Active probes

Single-ended or differential active probes handle higher bandwidths with lower signal loading. Single-ended active probes are typically used for measuring ground referenced, high- speed signals with low probe loading. With low loading, single-ended probes can be used on high-impedance, high-frequency circuits that would be overloaded with passive probes. Differential probes use a differential amplifier to subtract two input signals resulting in one differential signal for measurement by one channel of the oscilloscope. This allows you to use a standard ground referenced oscilloscope to measure signals that are not referenced to ground.

InfiniiMax Series

These specialized differential active probes complement the Infiniium Series scopes. The InfiniiMax III Series is the first 30 GHz probing system and gives you the industry's flattest frequency response and widest selection of probe heads and accessories. InfiniiMax probing systems span from 1.5 to 30 GHz bandwidth to measure high-speed signals with flexible connectivity solutions. InfiniiMax III+ probes offer InfiniiMode technology, which greatly expands the measurement capability and usability of the probe, letting it measure all the components of a differential signal.

Innovative probe accessories make connections a snap

Connecting to components like fine-pitch devices, surface-mount integrated circuits and DDR ball-grid arrays can be challenging. We remove this challenge by providing accessories that let you connect easily–even hands-free.

To see our entire portfolio of award-winning probes, view the probe catalog at www.keysight.com/find/keysightprobes

	U1600 Series	U2700	Series	1000 Series	2000 X-Series	
Scope bandwidth	20 to 200 MHz	100 MHz	200 MHz	60 to 200 MHz	70 to 200 MHz	
Probe interface		BNC				
Passive 1:1	U1560A	N2870A 10070D				
Passive 10:1	U1561A	10074D N2871A N2872A		N2862B N2863B		
High-voltage passive 100:1	U1562A	10076C				
High-voltage passive 1000:1				N2771B		
Low Z passive (50 Ω terminated)						
Active single-ended						
Active differential (high speed)						
Active differential (high voltage)				N2791A N2891A		
Current	U1583B	1146B N2893A N N2780B/81B/82B/83B ¹		1146B N2780B/81B/82B/83B ¹		
High-sensitivity current						
Rackmount kit				N2739A	N6456A	
Carrying case	U1591A			N2738A	N6457A	

1. Requires N2779A power supply.

For example the N7020A power rail probe is an active probe designed specifically to measure DC voltage rails. With low noise, low loading, a large DC offset range and 2 GHz of bandwidth it enables you see the details of your signal without added noise of your measurement system.

Probes & Accessories

	3000T X-Series	4000 X-Series	6000 X-Series	9000 Series	S-Series	90000A Series	V-Series	Z-Series	
Scope bandwidth	100 MHz to 1 GHz	200 MHz to 1.5 GHz	1 to 6 GHz	1 to 4 GHz	500 MHz to 8 GHz	2.5 to 13 GHz	13 to 33 GHz	20 to 63 GHz	
Probe interface	AutoProbe lite AutoProbe			AutoProbe			AutoProbe II		
Passive 1:1	N2870A 10070D		N2870A		N2870A with E2697A ⁵	N2870A	N2870A with N5449A		
Passive 10:1	N2843A N2894A			1	N2873A N2873A (500MHz) with E2697A		N2873A with N5449A		
High-voltage passive 100:1	10076C				10076C with E2697A		10076C with N5449A		
High-voltage passive 1000:1		N2771B N2771B with E2697A					N2771B	N2771B with N5449A	
Low Z passive (50 Ω terminated)	N2874A (10:1) N2876A (100:1) 54006A (10:1, 20:1)						N2874A N2876A 54006A with N5442A		
Active single-ended	N2795A/96A/97A, N7020A	N2795A/96A/97A 1130A ² , N7020A	N2795A/96A/97A 1130A/31A/32A/34A ² , N7020A		N2795A/96A 1131/2/44 ²	N2795A/96A/97A with N5442A			
Active differential (high speed)		750A 80A ²	N2750A/51A/52A, 1130A/31A/32A/34A ²	1130A/3	0A/51A/52A 31A/32A/34A ²)A/31A/32A ⁴	N2751A/52A N2830A/31A/32A ⁴ 1131/2/44 ² or 1168/69A5 ³ with differential probe accessory	N2800A/01A/02A/03A ⁴ N7000A/01A/02A/03A ⁴ tial		
Active differential (high voltage)	N2790A/91A/92A/93A, N2891A, N2818A/19A/04A/05A			I	790A/91A \2891A /19A/04A/05A	N2791A N2790A with E2697A ⁵	N5449A or N	91A/891A with 2792A/93A with 5442A	
Current		N2893A	1146B 1147B , N2780B/81B/82B/83B	1		1146B N2780B/81B/82B/83B ¹ with E2697A ⁵		147B with N5449A	
High-sensitivity current			N2820A/21A						
Rackmount kit	N6456A	N2763A	N2111A	1	N2902B	N5470A		N2759A	
Carrying case	N6457A	N	2733B		N5475A			N2748A	

Requires N2779A power supply.
 Order one or more InfiniiMax I probe head or connectivity kit. Order single-ended probe head for single-ended applications.
 Order one or more InfiniiMax II probe heads or connectivity kits per amplifier.

Order one or more InfiniiMax III probe heads.
 Includes one 10073D passive probe.

myKeysight

myKeysight www.key

INDAG

WARRANTY

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight's committed to superior product quality and lower total cost of ownership. Keysight is the only test and measurement company with a three-year warranty standard on all instruments, worldwide. And, we provide a one-year warranty on many accessories, calibration devices, systems and custom products.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Infoline

www.keysight.com/find/service

Keysight Infoline

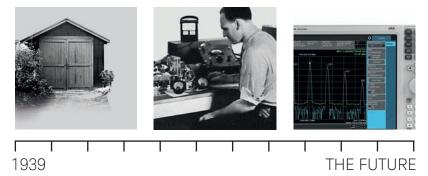
e Keysight's insight to best in class information management. Free access to your Keysight equipment company reports and e-library.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

 $\rm MIP|^{\circledcirc}$ service marks and logo marks are owned by MIPI Alliance, Inc. and any use of such marks by Keysight Technologies is under license. Other service marks and trade names are those of their respective owners.


PCI-SIG[®], PCIe[®] and the PCI Express[®] are US registered trademarks and/or service marks of PCI-SIG.

www.keysight.com

www.keysight.com/find/scopefamily

From Hewlett-Packard through Agilent to Keysight

For more than 75 years, we've been helping you unlock measurement insights. Our unique combination of hardware, software and people can help you reach your next breakthrough. Unlocking measurement insights since 1939.

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

<mark>Americas</mark> Canada Brazil Mexico United States	(877) 894 4414 55 11 3351 7010 001 800 254 2440 (800) 829 4444
Asia Pacific Australia China Hong Kong India Japan Korea Malaysia Singapore Taiwan Other AP Countries	1 800 629 485 800 810 0189 800 938 693 1 800 11 2626 0120 (421) 345 080 769 0800 1 800 888 848 1 800 375 8100 0800 047 866 (65) 6375 8100

For other unlisted countries: www.keysight.com/find/contactus (BP-01-01-16)

Europe & Middle East

Earopo a middlo Eaoc	
Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	0800 0260637

This information is subject to change without notice. © Keysight Technologies, 2008 - 2016 Published in USA, January 8, 2016 5989-7650EN www.keysight.com

